当前位置:首页 >> 客户服务技术资料

压力表弹簧管破裂原因分析及应对措施

发布时间:2018-03-15 17:33:20 浏览:

用于高压天然气生产的压力表弹簧管发生破裂后带来较大的安全风险。为了找出导 致压力表弹簧管破裂的根本原因,结合天然气属性,采用外观形貌观察、渗透检测、金相组织分析、微观形貌观察和能谱分析等方法对压力表弹簧管破裂处裂纹进行分析结果表明:压力表弹簧管 有一处渗透性的纵向裂纹;弹簧管末端封焊处不存在裂纹或气孔等焊接缺陷;渗透性的裂纹以沿 晶方式扩展;断裂面主要是基体材质;裂纹扩展的断裂面上存在少量的腐蚀产物和杂物;在晶粒表 面检测到汞的存在。通过分析认为:压力表弹簧管发生刺漏并非制造缺陷导致而是由于弹簧管 材质Monel合金中的合金元素Al和Cu与天然气中的汞形成汞齐,进而发生汞腐蚀,使得弹簧管材 质强度急剧下降,在内压作用下发生开裂。提出了五项预防措施:采用抗汞、CO2和Cl—腐蚀的合 金材质压力表;更换压力检测方式;将汞从天然气中脱出;定期开展设备检测清理积汞;在设计选 型阶段开展系统分析确保风险受控。

新疆某气田一口高压气井井口压力表在生产 过程中突然发生刺漏造成压力表表盘崩裂,该气 田立即紧急关井处理,并对刺漏的压力表进行拆 检,发现压力表弹簧管破裂,该井当时生产工况:井 口压力90.48 MPa,温度83.9 °C,地层水氯离子质 量浓度9 590 mg/L束质量浓度1. 12 mg/m3 。

压力表厂家为STEWARTS4JSA (斯图尔特-美 国),压力表量程为0~137.4 MPa弹簧管材质为 Monel合金。

井口压力表一般安装在采气树的顶部,当发 生刺漏后,天然气密度比空气轻在露天环境下 不易聚积,但如刺漏的速度快、时间长,且泄漏量 足够,有可能达到爆炸极限形成爆炸云团,存在 爆炸和火灾的风险。

1.检测与分析

1.1压力表内部情况

压力表内部主要是有一段外径7 mm壁厚 1.5 mm的中部旋转两圈半的Monel合金钢管,其 末端采取封焊密封,在末端管侧通过焊接连接到拉杆,拉杆与一个齿轮结构相连,齿轮与表盘上的 指针相联动,弹簧管段进口端与一固定桩相连,在固定桩标明了其材质是M(即Monel合金钢弹簧管的材质与其一致。该压力表的工作原理是:管线中的气体通过进口端到达该合金弹簧管段,利用气体的压力引起弹簧管的膨胀,从而导致拉 杆拉动表盘指针转动,由表盘上的指针位置读得 气体的压力数据。

压力表弹簧管中部旋转两圈半的弹簧管外表 面可以看到长约5 mm渗透性沟槽。

1.2渗透法无损检测

为了确定这个沟槽是否渗透,随后对弹簧管 段进行渗透法检测[3]。结果表明,渗透性沟槽确 实存在裂纹,其长度为4 mm左右见图1)。对 弹簧管段其他部位包括末端封焊部位的无损渗透 检测,均未发现裂纹。


1.3金相组织分析

采用MEF4M金相显微镜及图像分析系统对 弹簧管段渗透性裂纹及其附近的显微组织、裂纹 扩展晶界特征进行分析,分析方法参考相关文 献,结果见图2和图3。

从金相组织的分析来看,弹簧管中裂纹是沿 轴向延伸,裂纹断口的金相组织为奥氏体,试样腐 蚀后内壁晶界明显,说明受管内的介质腐蚀和内 压影响,裂纹是沿晶扩展的。

1.4裂纹断口表面微观形貌

采用TESCAN VEGA II扫描电子显微镜对弹 簧管裂纹断口表面的微观形貌进行观察,以确定 裂纹扩展的断裂形式。图4是该弹簧管裂纹尖端 附近的组织,具有沿晶断裂的特征。图5和图6 分别是弹簧管裂纹的壁厚中心和内壁表面的断口 形貌,可见,其扩展机理是沿晶断裂,这一结果与 金相组织分析的结果一致。、



1.5腐蚀产物能谱分析

采用TESCAN VEGA II扫描电子显微镜及其 附带XFORD INCA350能谱分析仪对裂纹处表面和截面的腐蚀产物进行形貌观察和元素分析。

首先对壁厚中心裂纹断口的晶界夹杂处进行了能谱分析,结果见表1。由表1可见,壁厚中心 晶界夹杂物处含有汞和其他金属基体元素,其中 碳元素属于基体中的碳化物。汞元素不属于基体 金属元素,应是其接触的天然气含的汞。


对裂纹断口的晶粒表面进行能谱分析,结果 见表2。可见,除碳元素外,其他元素的含量与基 体相近,未检测到汞的存在。


分别对弹簧管内壁裂纹断面晶界夹杂处、裂 纹断面内壁的晶粒表面、裂纹断面外壁的晶界夹 杂处及裂纹断面外壁的晶粒表面进行电镜扫描和 能谱分析M,结果见表3至表6。可见,弹簧管内 壁裂纹断面晶界夹杂处检测到汞,并含有一些腐 蚀产物及0和Si元素;裂纹断面内壁的晶粒表面 未检测到汞,同样含有一些腐蚀产物和杂物;裂纹 断面外壁的晶界夹杂处检测到汞的存在,并含有 一些腐蚀产物和杂物;裂纹断面外壁的晶粒表面 也检测到汞,并含有一些腐蚀产物和杂物。



2.分析与讨论

从扫描电镜、金相分析和能谱分析结果可以 看出:①渗透法检出压力表弹簧管中部两圈半圆 形管段中有一处渗透性的纵向裂纹,弹簧管末端 封焊处不存在裂纹、气孔等焊接缺陷;②渗透性的 裂纹以沿晶方式扩展;③裂纹断面的元素主要是 金属基本元素,部分晶粒表面检测到汞的存在,多 处晶界夹杂处也检测到了汞的存在,说明汞在晶 界夹杂处更容易聚集。同时因为检测到氧元素,所以裂纹断裂面上存在少量的腐蚀产物

该压力表接触到天然气和地层水,其中天然 气不含H2SXO2摩尔分数为0. 679% ( CO2分压 0.614 MPa)。对Monel耐蚀合金来说,裂纹断 口表面能谱分析检测到氧元素的存在说明在其表 面发生了 CO:腐蚀。地层水中的Cl_的质量浓度 9 590 mg/L那么输送天然气的管道和采油树 中水蒸气和凝析水含Cl -将会更少,CO2和Cl_ 腐蚀作用不会造成弹簧管开裂。

天然气中束的质量浓度为1. 12 mg/m3,在上 述的能谱分析中也检测到了汞的存在,说明汞参 与了腐蚀过程。在油气中汞主要以单质汞为主, 并含有少量的氯化高汞和痕量的二甲基汞,对油 气处理设备具有很强的腐蚀性_。具有高挥发 性和高毒性的汞的腐蚀性或破坏性体现在它可与 其他金属结合成汞的化合物汞齐),由于汞齐的 脆性远大于被腐蚀的金属材料,从而对设备造成 较大的破坏。但是不同金属元素与汞形成汞 齐的活泼性是不同的50 °C时活泼性顺序为:铝 (最容易形成铝汞齐)、铜加热条件下可形成铜 汞齐)、铁、镍、铬、锰后四者很难与汞形成汞 齐)。汞与铜形成铜汞齐后的腐蚀机理如下:

铜汞齐反应:Cu + Hg ^ CuHg

铜汞齐与水反应:

CuHg + 2H2O ^ Cu( OH) 2 + H2 + Hg

这一反应过程需要在加热的情况才能进行, 有文献报道需要加热到80 C以上。Monel 金是一种高镍铜耐蚀材质,目前主要产品有蒙耐  M400 ( UNS: No4400)、蒙耐尔 K500 ( UNS: No5500)和蒙耐尔R405 ( UNS: No4405)等,其组成 中镍质量分数63% ~ 70%,铜质量分数27% ~ 34%,碳质量分数不大于0.3%,硫质量分数不超过 0.06%,其余合金元素有锰、铁、钛和铝,其中锰、铁 和钛三元素质量分数为1.5% ~3.15%

3.结论与建议

(1)压力表弹簧管有渗透性的裂纹存在,渗 透性裂纹的断口为沿晶扩展,并在晶界夹杂处检 测到汞及少量的腐蚀产物。

(2)压力表弹簧管发生刺漏是由于弹簧管材 Monel合金中的合金元素Cu与天然气中的汞 形成汞齐,进而发生汞腐蚀,使得弹簧管材质强度急剧下降,在内压作用下发生开裂而导致的

(3)对目前该气田所使用的压力表进行检 查,将弹簧管材质是Monel合金的压力表更换为 Monel合金弹簧管压力表,同时考虑抗CO Cl-腐蚀,如使用哈氏合金的压力表。

(4)考虑选择其他结构的压力表和压力检测 仪器,将腐蚀介质与压力表接管隔离,如使用哈氏 合金膜片的隔膜压力表和压力变送器。

(5)防止汞腐蚀设备和管道最根本的措施是 将汞从天然气中脱除,或使用防汞腐蚀涂层,杜绝 汞与金属设备表面接触。

(6)定期检测管道和设备的汞腐蚀情况,并 及时对产生汞聚积的管道和设备进行清汞处理。

(7)在压力表选型时必须掌握足够的基础数 据和信息,并开展工艺安全分析,确保在设计选型 时控制各种风险。